from dataclasses import dataclass
from pathlib import Path
import deepspeed
import torch
from datasets import load_dataset
from torch import nn
from torch.utils.data import Dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
import torchrunx
class GPT2CausalLMDataset(Dataset):
def __init__(self, text_dataset):
self.dataset = text_dataset
self.tokenizer = AutoTokenizer.from_pretrained("gpt2")
self.tokenizer.pad_token = self.tokenizer.eos_token
self.max_length = 1024
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
encoded = self.tokenizer(
self.dataset[idx]["text"],
max_length=self.max_length,
truncation=True,
padding="max_length",
return_tensors="pt",
)
input_ids = encoded.input_ids.squeeze()
attention_mask = encoded.attention_mask.squeeze()
labels = input_ids.clone()
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels,
}
@dataclass
class DSPArgs:
deepspeed_config: str
# train_batch_size: int
# batch_size: int
def train():
model = AutoModelForCausalLM.from_pretrained("gpt2")
# optimizer = torch.optim.Adam(model.parameters())
wikitext_train = load_dataset("Salesforce/wikitext", "wikitext-2-v1", split="train")
train_dataset = GPT2CausalLMDataset(text_dataset=wikitext_train)
loader = torch.utils.data.DataLoader(train_dataset, batch_size=8)
model_engine, optimizer, _, _ = deepspeed.initialize(
args=DSPArgs(deepspeed_config="dsp_config.json"),
model=model,
model_parameters=model.parameters(),
)
model.train()
for batch_idx, batch in enumerate(loader):
if batch_idx == 10:
break
print(f"Step {batch_idx}")
device_batch = {k: v.to(model.device) for k, v in batch.items()}
model.zero_grad()
loss = model_engine(**device_batch).loss
model_engine.backward(loss)
model_engine.step()
if __name__ == "__main__":
Path("output").mkdir(exist_ok=True)
results = torchrunx.launch(
func=train,
hostnames=["localhost"],
workers_per_host=1,
)